Menu

phd
project 8

Project title: Towards a circular sulphur economy

Topic background – Since biogas and landfill gas streams are renewable energy sources, their global use has increased during the last decades and is expected to remain rising. Typically, toxic hydrogen sulphide (H2S) needs to be removed from these gas streams to prevent harmful sulphur dioxide emissions. The biological gas desulphurisation process under haloalkaline conditions is a cost-effective and environmentally friendly alternative for the conventional physical-chemical gas desulphurisation processes. In addition to H2S removal from these gas streams, biologically produced elemental sulfur can be harvested from the process, as well. Especially the relatively small particle size and hydrophilicity of the biologically produced elemental sulfur are benefits for application as fertilizer and/or fungicide. As the research in the Sulfur Theme of Wetsus focusses on the optimization of the biological desulfurization process, it facilitates the transition towards a circular sulphur economy.

Research challenges – In the biological gas desulphurisation process, gas, liquid, and solid phases co-exist. For instance, in the absorber, a gas phase (sour gas) is contacted with a liquid phase (haloalkaline solution), which contains solid phases (biosulphur particles and microorganisms). While the microbial community and its associated kinetics have been extensively studied, a number of phenomena in the biological gas desulphurisation process are not yet fully understood. The recently discovered electron shuttling capacity of sulfide oxidizing bacteria is one of these. Due to these phenomena, dissolved sulfide is removed from process solution, without consuming oxygen. Other not fully understood phenomena are, for instance, the enhancement of H2S absorption by bacteria and the sulfur crystals formation. All of these processes are hypothesized to occur at the interfaces of the biological desulfurization process. Hence, research is required to investigate the interplays between kinetics of chemical and biological reactions and transfer rates at the interfaces.

Objectives and methodology – This project aims to understand the interplays between the kinetics of the biological reactions, the kinetics of the chemical reactions, and the transfer rates around the various gas-liquid and liquid-solid interfaces in the biological gas desulphurisation process. In the last decennia, a large number of projects have been executed, resulting in a vast amount of experimental data. However, a minimum amount of the full potential of the work has been utilized, since the majority has not been used for modelling to unravel the aforementioned phenomena. Hence, part of this work will be focussing on developing models describing the transfer and reaction kinetics at the interfaces. In addition, next to utilizing data obtained in previous work, experimental work will be performed in batch and/or continuous bench scale setups to gather data for model validation and calibration. Furthermore, when required, pilot plant facilities (owned by Paqell B.V.) may be used validate the developed models.

Students’ requirements

Keywords Biological Sulfide oxidation, Interfaces, Kinetics, Modelling

Academic supervisor Prof. dr. K.J. Keesman (Mathematical and Statistical methods, Wageningen University).

Wetsus Supervisor: Dr. Ir. Jan Klok (Theme Coordinator Sulfur)

Only applications that are complete, in English, and submitted via the application webpage before the deadline will be considered eligible.

Guidelines for applicants:  https://phdpositionswetsus.eu/guide-for-applicants/

Project 8 - Towards a circular sulphur economy

  • Fill in the number (not the title) of the project e.g, 8
  • Fill in the project number
  • Fill in the project number
    If you are residing in the Netherlands, please refer to this guide for applicant for the MSCA mobility requirement.
    i.e., if you want to apply, you should be in the first 4 years of your research career and do not have a doctoral degree. Please refer to this guide for applicant for MSCA requirement.
  • Drop files here or
    Max. file size: 20 MB, Max. files: 1.
      Upload your motivation letter, CV, copy of degree and grades and reference letter(s) as one PDF file. The PDF file must be named: (your first name) (your surname). Please refer to this guide for applicant for more details.
    • Drop files here or
      Max. file size: 100 MB, Max. files: 1.
        Upload your motivation video as MP4 file and named as (your first name) (your surname).